
,

High Performance Object-Oriented Scientific Programming in
Fortran 90

Charles D. Norton* Viktor K. Decykt Boleslaw K. Szymanskit

Abstract
We illustrate how Fortran 90 supports object-oriented concepts by example of

plasma particle computations on the IBM SP. Our experience shows that Fortran 90
and object-oriented methodology give high performance while providing a bridge
from Fortran 77 legacy codes to modern programming principles. All of our object-
oriented Fortran 90 codes execute more quickly than the equivalent C++ versions, yet
the abstraction modeling capabilities used for scientific programming are comparably
powerful,

1 I n t r o d u c t i o n

Computer simulations are very useful for understanding and predicting the transport of
particles and energy in fusion energy devices called tokamaks [1]. Tokamaks, which are
toroidal in shape, confine the plasma with a combination of an external toroidal magnetic
field and a self-generated poloidal magnetic field. The plasma confinement in these devices
is not well understood and is worse than desired.

One of the two computer models used in the Numerical Turbulent ‘11-ansport Project
is a gyrokinetic code—a reduced particle-in-cell (PIC) code that follows the trajectories
of guiding centers of particles, neglecting the rapid rotation around the magnetic field.
PIC codes integrate the trajectories of many particles subject to electro-magnetic forces,
both external and self-generated. These forces are calculated from a set of field equations
(usually Maxwell’s equations or a subset) on a grid. The particle’s coordinates are described
by continuous variables. The source terms in Maxwell’s equations (charge and/or current
density) are calculated on a grid by interpolation. After the field equations have been solved
on the grid, the forces on the pm%icles are found by interpolation from the grid.

l’he General Concurrent PIC Algorithm [8], which partitions particles and fields among
the processors of a distributed-memory supercomputer, can be programmed using an SPMD
design approach. Although the Fortran 77 versions of these programs have been well-
benchmarked [4], there is an increasing interest in the scientific community to apply object-
oriented principles in scientific programming [12]. In a three-dimensional PIC program,

*Jet Propulsion Laboratory, Cahfornia Institute of Technology, Pasadena, CA 91109-8O99. The author’s
research was conducted while holding a National Research Council Research Associateship. Email:
nort.onc@olympic,jpl .n asa.gov

t Department of Physics and Astronomy, ” University of California at Los Angeles, Los Angeles, CA
90024-1547 and Jet Propulsion Laboratory, California Institute of Technology, Pasadena CA 91 10SI-
8099. The author’s research was sponsored by USDOE, NSF, and under a contract with NASA. Email:
decyktlphysics. ucla.edu

t Department of Computer Science and Scientific Computation Research Center (SCOREC), Rensselaer
Polytechnic Institute, Troy, NY 12180-3590. The author’s research was sponsored under grants CCR-
9216053 and CCR-9527151 Email: szymansk@cs.rpi. edu

1

——

2
.

advancing particles in space and depositing charge to the field might look like the following
in Fortran 77.

dimension part (idimp ,npmax) , q(nx ,ny ,nzpmx)
dimension fx(nx, ny, nzpmx) , fy(nx, ny, nzpmx), fz(nx, ny,nzpmx)
d a t a qme, dt / - 1 . , . 2 /
cal l push3 (part , fx , fy , fz ,npp,nof f ,qtme,dt,vke,nx,ny,idimp,npmax,nzpmx)
call dpost3 (part ,q,npp,noff ,qme,nx,ny,idimp,npmax,nzpmx)

The particles (part) aredescribed by continuous variables. The charge density field (q)and
the electric force fie]d(fx, fy, fz)arerepresented by discrete grids. All ofthese components
are slab-partitioned across the processors. The most time consuming operations ofpushing
particles (push3) and depositing charge (dpost3) contain parameters involving particles
and fields with additional components required by the computation. Ideally, it would be
preferable to introduce abstractions that clarify this representation.

In

USE partition.module
USE plasma_module
TYPE (species3d) :: electrons
TYPE (sfields3d) :: charge. density
T Y P E (vfields3d) :: efield
TYPE (slabs) :: edges
real :: dt = ,2
call plasma_ push3 (electrons, efield, edges, dt)
ca l l plasma_dpost3 (e lec t rons , charge_density, e d g e s)

this Fortran 90 version the electron species properties have been encapsulated into a
species derived-type. Similarly, properties of the scalar charge density and vector electric
field have cachbeen encapsulated. By use-association of amodule, access to routines and
datathat defineoperations onthe particlesand fields are now available tothemainprogram.
Additionally, the creation ofabstractions--such as the fields----may have come from existing
abstractions, but this is all information hidden behind various interfaces. The abstraction
modeling capabilities of this modern language are attractive. In this paper we consider the
benefits of applying object-oriented principles to the new constructs of Fortran 90.

2 A b s t r a c t i o n M o d e l i n g i n F o r t r a n 9 0
The new features of Fortran 90, many of which have not been presented in the simple
example above, encourage the creation of abstract data types, encapsulation, information
hiding, inheritance, function overloading, and many features beyond array-syntax to ensure
the safe development of advanced programs. Many of these ideas support object-oriented
concepts [5]. Furthermore, since Fortran 90 is a subset of High Performance Fortran, a
migration path to parallel computation using these techniques exists as well.

The Fortran 90 programming language contains many new features while remaining
backward compatible to Fortran 77 [6]. The most important features for our purposes
include derived-types, pointers, dynamic memor~ operations, army-syntax and related
intrinsic functions, modules, overloading, generic procedures, and use-association. All of
these concepts were applied in writing a two-dimensional object-oriented PIC program in
Fort ran 90 [10], therefore, we will describe how that program was extended into three-
dimensions. A much more complete description of how Fortran 90 statements map into

●

3
.

.
MODULE species.class

USE d i s t r ibu t ion -c l a s s ! bring in o the r c l a ss f ea tu res
USE slab.partition-class
IMPLICIT NONE
TYPE particle3d ! derived-type

PRIVATE
r e a l :: x, y, z, Vx, Vy, Vz

END TYPE particle3d
TYPE species3d ! derived-type

r e a l :: qm, qbm, e k
integer :: nop, n p p
TYPE (particle3d), DIMENSION (:), POINTER :: p

END TYPE species3d
CONTAINS

SUBROUTINE spec_dist(this,edges,distf,noff) ! member function

TYPE (species3d), INTENT (out) :: this
TYPE (slab), INTENT(in) :: edges
TYPE (distfcn), INTENT (in) :: distf
INTEGER, INTENT (in) :: noff
! subroutine body...

END SUBROUTINE spec-dist
! additional member functions. . .

END MODULE species-class

F IG . 1. A Fortran 90 module, for the species class, supporting various object-oriented
concepts. Features of other classes are made available bg use-association, objects am= dejined bp
Forimn 90 derived-type variables, and member functions opemting on the objects are specijied within
the contains statement.

object-oriented concepts are described in related publications [5, 9, 10]. Nevertheless,
figurel shows asection ofthe species class that illustrates some ofthese features.

A Fortran 90 module may contain data, type declarations, and related routines.
Fortran 90 derived-types, similar to structures in the C programming language, allow
new types to be created from intrinsic and previously defined derived-types.] Module
components are public by default, but some (or all) of the components can be private.
Additionally, derived-types can have private components, seen in the particle3d type,
restricting access to module member functions.

The use statement makes components of existing modules available within the scope
they are used. This allows direct support for some object-oriented features, such as
inheritance by composition, as well as the emulation ofother features, like inheritanceby
sub-typing. Some languages (including C++) define inheritance so that sub-typing—the
ability ofa derived class object to assume the type ofabase class object—is automatically
applied. This form of inheritance is somewhat restrictive, compared to a more “open”
definition such as composition inheritance—defining new class objects as incremental
changes to existing c]asses where sub-typing is not necessarily preserved, Froma theoretical

l~rtran go introduces the te~ derived-type to mean abstract data type, which shouldn't be~nfused

with “derived” used in other contexts (such as derived class) in an object-oriented class hierarchy.

s

o

4
.

d

MPI Module SlabPertitionlng Modul

number of mocessors Ieffhiaht borders
processor id
processor type I
u

i
USeti by

ComplexFlelds Module

field energy
complex field
field geometry
particle halfwidth x, y, z

Creale/Des!roy Field
Poisson Soive

%k+ose Field
.

USSd by

- I regio~ size IxUniform Partitioning

L ●

-by
completitranspase charge field
complexhranspose electric field I
Create/Destroy Fields
Update Partitioned Field Borders
Solve Fields

I

I Species Module I
fotai # of parlicles on Proc,
total #of panicles in species
charge, charge/mass of species
kinetic energy of species
collection of species parficles

Create/Destroy Species
Distribute Species
Set Kinetic Energy

L I

USed by

Plasma Module
Enarav Module

L&%R%RI

FIG. 2. The model design for the object-oriented Fortmn 90 pamllel progmm

viewpoint some bclicvc that combining sub-typing and inheritance Icads to misconceptions,
in fact, they should bc sel)aratc issues [3, 7]. In general, we have found that composition
inheritance is more useful than sub-typing inheritance in scientific programming [9].

Fortran 90 is a statically-typed language, all references to types must bc resolved at
compile-t ime, indeed, all t ypcs must be unambiguously (or uniquely) defined. Formal
parameters to routines defined within a module automatically contain implicit intcrfacc
specifications allowing t hc compiler to type-check routine arguments at compile-t imc. (An
explicit interface block can be introduced for routines not defined within modules.)
Syntactically, objects must bc present in the routine call, so we make the first argument
the object performing the operation and call it “this” by convention. Formal parameters
may have the intent attribute determining the read-only, write-only, or read-write status
of arguments to the routine. A variety of array types supporting complete and array
subsection operations arc included in the language standard.

3 O b j e c t - O r i e n t e d P I C P r o g r a m s in Fortran 90 and C + +
The original I?ortran 77 programs were reorganized into an object-oriented form and
implemented in I?ortrall 90 and C+-+. Figure 2 shows t hc Fortran 90 organization using t llc
OMT notation [11]. ‘1’hc structure of the three-dimensional program is identical to the two-
dimensional version, but the internal encapsulated features have been modified for threc-

,

5
.

dimensional programs. The ScalarFields and VectorFields modules inherit partitioning
information from t hc SlabPart it ioning module. Interprocessor communicant ion feat ures
are provided by the MPI Module. This module binds the Fortran 77 MPI library calls
to Fortran 90 through interface declarations. The particle species---defined by the
Species Module wit h particle distribut ions specified by the Distribution Module-–is also
partitioned, however, information known by the slab partitioning module is simply used by
the species, so an inheritance relation is not defined. The Fields Module contains routines
that operate on the scalar charge density field, vector electric field, and complex fields (used
by the FFT’s and Poisson’s Equation solver). The Plasma Module contains no data, only
routines that operate on particles and fields including the push3 (Advance) and dpost3
(Charge Deposition) operations described earlier.

The derived-types, which are the class data members in Fortran 90 programming, are
encapsulated in the module definitions. Variables of these types form the ‘{objects” used in
Fortran 90 programs, Modules may contain many derived-types and these may contribute
to the definition of new derived-types, as we have seen in figure 1. Hence, the routines in the
Fortran 90 contains statement may operate on any number of the derived-types contained
therein. This approach is different than in a language such as C++ where a single object
represents an entire class. These differences have implications on how scientific programs
are modeled using object-oriented techniques [9].

Figure 3 shows the major operations of the main program for the three-dimensional
code. Since the partition and plasma modules use other modules in their definition all of the
objects can be created from use-association of these modules. In C++, object constructors
combine declaration and initialization into a single statement, whereas in J?ortran 90 they
must be done separately. Fort ran 90, however, does provide an array constructor syntax.
All of the major operations involve high-level concepts, while the implementation details
are encapsulated in module/class definitions.

One aspect some consider important in object-oriented programming is the use of run-
time polymorphism, or dynamic-dispatching. The technique, which introduces a run-time
penalty, allows an operation to bc applied to objects sharing a sub-typing inheritance
rclat ionship, however, the action performed varies with the object’s type. Dynamic-
dispatching was not needed in the C++ or Fortran 90 programs (all objects could be
resolved at compile-time). Nevcrt helms, we have found that object-oriented techniques are
beneficial even when some aspects are not applied, or find limited usefulness.

4 P e r f o r m a n c e

Table 1 shows the performance for two-dimensional and three-dimensional parallel progratns
on the IBM SP2. The most remarkable aspect is that the object-oriented Fortran 90
programs were competitive with the Fortran 77 versions, and always more efficient than
the C++ programs.

The three-dimensional Fortran 90 program outperformed the Fortran 77 version due
to the improved cache-utilization of clustering field components into a single Fortran 90
derived type rather than storing each field dimension in separate Fortran 77 arrays. For
example, a 294,912 particle simulation on 4 processors completed in 367.88 seconds in
Fortran 90 while the Fortran 77 version finished in 411.00 seconds. The Fortran 90 program
used 559.64 milliseconds per call combined to advance particle positions and velocities in
push3 and deposit charge in dpost3
milliseconds for the same operations.

while the Fortran 77 program used a total of 685.66
This represents 64.7% of the total cumulative time of

PROGRAM beps3k .
USE partition.class, plasma_class
TYPE
TYPE
TYPE
TYPE
TYPE
TYPE
c a l l
c a l l
c a l l
c a l l
c a l l
c a l l

(d i s t f 3 d) :: backdf, beamdf
(species3d) :: e l e c t r o n s
(sfields3d) :: cdensity
(vfields3d) :: efield
(energy) :: energ
(slab) :: edges
MPI_INIT(ierror)
species-init (electrons,qme ,qbme,np,nvp) ! initialize p a r t i c l e s
fields-init(cdensity ,nx,ny,nz,nvp) ! initialize fields with

fields-init(efield,nx,ny,nz,nvp) ! generic procedures
plasma.dpost3(electrons,cdensity,edges) ! in i t ia l charge depos i t
sfields-add(cdensity ,edges,qiO) ! ion background charge

DO itime=l,500
c a l l
c a l l
c a l l
c a l l
c a l l
c a l l
c a l l
c a l l

END DO

fields_solve(cdensity,efield) ! talc. force/charge
plasma_getpe(energ, efield) ! efield energy
plasma_push3(electrons,efield,edges,dt) ! push particles
plasma_pmove3 (electrons,edges) ! move across pEs

plasma_dpost3(electrons ,cdensity,edges)
sfields_add(cdensity,edges,qiO)
plasma-getke(energ ,electrons) ! particle energy
energy-gette (energ) ! energy diagnostic

c a l l fields-destroy(efield) ! destroy dynamic objects
c a l l fields_destroy(cdensity)
c a l l species-destroy(electrons)
MPI_FINALIZE(ierror)

END PROGRAM beps3k

F I G. 3. Sections of the For.!mn 90 main program for the three-dimensional object-oriented
parallel simulation program. Objects are declared and initialized from derived- tgpes defined within
modules. Fortmn 90 generic procedures allow fields of different types to be crwated using a common
routine name. The objects are the first a~ument to module memberfunctions, by convention.

the simulation for those two functions in Fortran 90 compared to71.0% in Fortran 77. On
a problem where the fields fit into the entire cache, using 15,552 particleson4 processors,
the Fortran90 version completed in22,77 seconds whllethe Fortran 77 version finished in
20.96 seconds. The Fortran 90 program used 24.05 milliseconds per call combinedin the
paxticle advance and charge deposition routines while the Fortran77 program used 23.84
milliseconds per call combined. In both cases, the xM90compilerw asused,

Another aspect of performance is development time. The two-dimensional object-
oriented Fortran 90 program was extended by incrementally modifying features of the
two-dimensional Fortran 77 version. The benefit ofthis approach is that redevelopment
in a new language, possibly C++, was not required. This simplified testing and allowed
the three-dimensional object-oriented Fortran 90 version to beprogranlmed over aweekend
(by extending the two-dimensional object-oriented Fortran 90 version). Granted, these are

7
●

,
T ABLE 1

Performance characteristics for a beam-plasma instability experiment. IBM SP2 (66.7 MHz

clock per thin-node, 40 MB/see network user-space high-performance switch protocol, and AIX 4. 1)
with W! processors.

Machine I PEs

IIBM SP2 32
IBM SP2 32
IBM SP2 32
IBM SP2 32

IIBM SP2 32
IBM SP2 32
I B M SP2 3 2
IBM SP2 32

Language I Compiler I Part icles
Two-Dimensional Program

E!E5E
Three-Dimensional Progr;m

Fortran 77 I IBM xlfl10 I 7,962,624

Time (sec.)

193.52
195.08
202.88
359.00

1548.71
1550.14
1339.91
2797,00

skeleton programs, but the encapsulated feat ures limited where changes were introduced
and the main program was essentially identical to the two-dimensional object-oriented
Fortran 90 version. When considering the use of object-oriented methodology for existing
programs developed in Fortran 77, this approach may be more beneficial than trying to
learn a new language only to gain abstraction in programming, particularly when the
performance may not be as competitive or the user experience as advanced.

5 C o n c l u s i o n

We have entered a period of time where the ability to produce scientific software that is
reliable, portable, efficient, safe, and well-understood, is as important as efforts to construct
supercomputers with sufficient sustained peak-performance and memory requirements to
produce new science. Although we have used Fortran 90 in the context of object-oriented
programming, the fundamental feat ures can be beneficial even if these concepts are not
applied. Although Fortran 90 was not designed as an object-oriented language, we are
not the first to develop an object-oriented methodology for a language not explicitly
object-oriented [2, 11]. Our experience indicates that it is possible to use Fortran 90
features to model many aspects of explicitly object-oriented languages, such as C++
[5]. However, such modeling can be tedious at times since some features, such as sub-
typing inheritance, must be constructed explicitly in Fortran 90, Efforts to formally
introduce object-oriented language features in Fortran may be considered in future language
draft proposals. Nevertheless, the benefits of abstraction with performance comparable
to the original Fortran 77 programs makes Fortran 90 very appealing for object-oriented
programming.

Current efforts include characterizing the features of Fortran 90 that can affect
performance when object-oriented approaches are used. Some preliminary work in
this area indicates that compilers exhibit varying levels of performance when array
operations, use-association, and pointers wit hln derived-types are applied, to name a
few. Additional information beyond the scope of this paper is available on the Internet
(http: //www.cs.rpi.edu/ ‘szymansk/oof90. html).

8

●

Acknowledgments We appreciate the support of Robert D. Ferraro, associate project
manager of NASA HPCC and Tbm Cwik, technical group supervisor, Jet Propulsion
Laboratory, California Institute of ‘lkchnology. Additionally, we thank the Scientific
Computation Research Center at Rensselaer Polytechnic Institute for access to the IBM
SP2.

R e f e r e n c e s

[1]

[2]

[3]

[4]

[5]

[6]

[7]

[8]

[9]

[10]

[11]

[12]

C. K. Birdsall and A. B. Langdon, Plasma Physics via Computer Simulation, The Adam Hilger
Series on Plasma Physics, Adam Hilger, New York, 1991.
G. Booth, Object-Oriented Development, IEEE ‘Ihnsactions on Software Engineering, SE-12
(1986), pp. 211-221.
W, Cook, W. Hill, and P. Canning, Inheritance Zs Not Subtyping, in Proc, 17th ACM
Symposium on Principles of Programming Languages, January 1990, pp. 125-135.
V. K. Decyk, Skeleton PIC Codes for Pamllel Computers, Computer Physics Communications,
87 (1995), pp. 87-94.
V. K, Decyk, C. D. Norton, and B. K. Szymanskl, Introduction to Object-Oriented Concepts
Using Fortmn 90. Submitted to Computers in Physics, July 1996.
T. M. R, Ellis, 1, R. Philips, and T. M. Lahey, Fortmn 90 Pmgmmming, Addison-Wesley,
Reading, MA, 1994.
K. Fisher and J, C. Mitchell, Notes on typed object-oriented programming, in Theoretical
Aspects of Computer Software, M. Hagiya and J. C. Mitchell, eds., Springer LNCS 789, 1994.
Proc, of International Symp. TACS ’94, Sendai, Japan - April 1994.
P. C. Llewer and V. K. Decyk, A Geneml Concurrent Algorithm for Plasma Particle-in-Cell
Simulation Codes, J, of Computational Physics, 85 (1989), pp. 302-322.
C. D. Norton, Object Oriented Programming Pamdigms in Scientific Computing, Phi) thesis,
Renssleaer Polytechnic Institute, ‘IYoy, New York, August 1996. UMI Company.
C. D. Norton, V. K. Decyk, and B. K. Szymanskl, On Parallel Object Oriented Progmmming
in Fortran 90, ACM SIGAPP Applied Computing Review, 4 (1996), pp. 27-31.
J. Rumbaugh, M. Blaha, W. Premerlani, F. Eddy, and W. Lorensen, Object-Oriented Modeling
and Design, Prentice Hall, Englewood Cliffs, NJ, 1991.
B. K. Szymanski and C. D. Norton, eds., Special Issue on Pamllel Object-Oriented
Programming, vol. 4, ACM SIGAPP A p p l i e d C o m p u t i n g R e v i e w , S p r i n g 1 9 9 6 .
http: //www.acm.org/sigapp/acr/index.html.

